'브레이크 원리'에 해당되는 글 1건

  1. 2017.09.14 브레이크, 멈추지 못하면 달릴 수도 없다 [AUTO & LIFE]


‘브레이크를 잘 사용하면 더 빠르다’


자동차 레이스에서 전해져 내려오는 격언입니다. 언뜻 보면 앞뒤가 맞지 않는 말 같습니다. 브레이크는 자동차의 속도를 줄이는 장치인데 어떻게 이것이 자동차를 더 빠르게 만든다는 것인지 이해가 되질 않습니다. 


바로 여기에 브레이크의 신비가 있습니다. 처음에는 그저 멈추기 위한 도구였던 브레이크가 차량을 드라이버가 마음대로 조종하기 위한 중요한 도구로 발전한 것입니다. 브레이크를 잘 사용하면 결과적으로 빨라질 수 있다는 뜻입니다. 그런데 이제는 브레이크가 실제로 자동차를 더 잘 달리게 할 수도 있는 시대가 왔습니다. 브레이크의 아이러니. 이제부터 알아보겠습니다.


물체를 움직이게 하는 것 자체가 힘들었을 때는 브레이크는 필요하지 않았습니다. 그런데 통나무를 무거운 물체 아래에 놓고 굴리기 시작하면서 상황이 달라졌습니다. 즉 원시적인 바퀴가 탄생하면서 물체를 움직이게 하는 만큼 멈추게 하는 것이 중요해진 것입니다. 일단 움직이기 시작한 물체를 원하는 곳에 멈추게 해야 할 필요가 생겼고, 심지어는 내리막에서 커다란 석재가 엄청난 속도로 미끄러져 내려가 사람들을 위험에 빠뜨리지 않도록 속도를 제어해야 했습니다. 


브레이크의 원리는 물리적으로는 아주 단순합니다. 움직이는 물체는 운동에너지를 갖는데 이 에너지를 빼앗아서 다른 형태로 바꿔버리면 속도가 줄어들게 되는 것입니다. 어렸을 적에 바퀴가 달린 말이나 발로 미는 자전거, 혹은 세 바퀴 자전거를 타면서 이것들을 멈출 때 우리는 발바닥을 땅에 문지르며 속도를 줄였습니다. 즉 지면과의 마찰력을 이용했던 겁니다. 마찰력은 운동에너지를 열에너지로 바꾸기 때문에 속도가 줄어듭니다. 애니메이션이나 영화에서 발바닥을 이용하여 가까스로 멈추는 장면 끝에는 발바닥에 불이 붙거나 연기가 나는 장면이 반드시 뒤따릅니다. 물리학적으로 옳은 장면입니다.


현대적 자동차용 브레이크 시스템은 1900년에 마이바흐에 최초로 적용된 드럼 브레이크였습니다. 회전축에 부착된 원통형 드럼의 안쪽에 브레이크 슈shoe를 마찰시키는 방식의 드럼 브레이크는 흙이나 물 등의 이물질에 마찰력이 영향을 받지 않으므로 안정적인 제동력을 발휘할 수 있었습니다. 초기에는 케이블이나 레버 등으로 작동되던 드럼 브레이크는 1930년대가 되면서 브레이크 페달은 유압을 이용해 드럼 브레이크에 제동을 가하는 유압식으로 발전합니다. 


하지만 자동차가 빨라지고 무거워지면서 드럼 브레이크는 한계에 봉착합니다. 그것은 바로 열이었습니다. 무겁고 빠른 차의 더 많은 운동에너지를 더 많은 열에너지로 변환시키자 밀폐된 구조의 드럼 브레이크는 열을 충분히 배출할 수 없었던 겁니다. 가열된 드럼은 팽창하게 되고, 브레이크 슈는 마찰력이 급격하게 떨어졌으며 휠 실린더 안의 유압액은 끓어오르며 페달의 제동력을 전달하지 못했습니다. 그래서 요즘은 드럼 브레이크는 속도가 느린 트럭이나 무게가 가벼운 소형차의 뒷바퀴용 제동 장치에 제한적으로 사용됩니다. 제동력의 큰 부분을 담당하는 앞바퀴는 방열성이 뛰어난 디스크 브레이크에게 넘어갑니다.


디스크 브레이크의 위력이 여실히 증명된 것은 1953년 르망 24시간 레이스였습니다. 여전히 드럼 브레이크를 사용하던 경쟁자들과 달리 재규어는 C-타입 경주차에 디스크 브레이크를 적용하였고 우승까지 차지합니다. 재규어의 우승은 거의 순전히 디스크 브레이크의 덕택이었습니다. 브레이크를 한계까지 몰아붙이는 내구 레이스는 잘 멈출 수 있다는 성능에 대한 믿음이 더욱 빠른 스피드를 내는 원동력이라는 것을 증명한 것입니다. 그 후 1980년대까지 거의 모든 승용차의 전륜 브레이크는 디스크로 바뀌었고 현재는 승용차의 약 80% 이상이 디스크 브레이크를 사용합니다.

▲ 재규어 C-타입 경주차


사실 디스크 브레이크는 드럼 브레이크와 거의 같은 시기인 1902년에 윌리엄 란체스터(William Lanchester)에 의해 개발되었습니다. 그러나 외부로 노출되는 구조는 비포장도로가 대부분이었던 당시 도로 상황에 취약했고 브레이크 패드에 마땅한 소재가 없어서 구리를 사용했기 때문에 패드의 수명이 너무 짧아서 널리 사용되지 못했습니다. 디스크 브레이크가 다시 빛을 보게 된 것은 2차대전을 앞둔 1930년대였습니다. 비용보다 절대 성능이 중요했던 항공 분야, 그리고 군용 중장갑 차량 등이 디스크 브레이크를 채용한 것입니다. 


자동차의 성능이 향상되면서 디스크 브레이크의 성능도 발전했습니다. 디스크의 면적은 더욱 넓어지고 브레이크 패드의 개수와 면적도 넓어졌습니다. 그래서 등장한 것이 8 피스톤 캘리퍼 등 대형 캘리퍼입니다. 디스크의 열 발산 성능을 높이기 위하여 디스크 사이에 환기용 홈이 패인 벤틸레이티드 디스크가 출현했고 패드와 디스크 사이의 마찰력 증가를 위하여 구멍이나 홈이 패인 드릴드 로터, 슬롯티드 로터 등이 나타났습니다. 하지만 엔진의 성능은 비약적으로 향상되었고 이제는 디스크 브레이크도 근본적인 혁신이 필요해졌습니다. 그것은 바로 새로운 소재의 적용이었습니다.


디스크와 캘리퍼가 커질수록 바퀴의 무게는 무거워집니다. 바퀴의 무게, 즉 서스펜션 아래 중량이 무거워지면 차량의 조종 성능이 급격히 악화됩니다. 따라서 무턱대고 디스크와 캘리퍼를 크게 만들 수는 없었습니다. 그리고 열을 더욱 잘 발산시키는 소재가 필요했습니다. 그래서 등장한 것이 세라믹 소재의 디스크, 그리고 알루미늄 소재의 캘리퍼입니다. 


세라믹 이외에 알루미늄이나 카본 파이버 등도 디스크의 소재로 실험되었습니다. 로터스의 경량 스포츠 카인 엘리제(Elise)는 알루미늄 디스크를 사용했지만 약한 내구성 때문에 고성능 모델에는 주철 브레이크를 사용할 수밖에 없었습니다. 카본 파이버 디스크는 1969년 콩코드 초음속 여객기에 처음 적용되어 탁월한 극한 성능을 증명합니다. 그러나 엄청나게 비싼 가격, 고온에서만 우수한 성능을 발휘하고 물기가 묻으면 제동력이 전혀 발휘되지 않는 등의 까다로운 특성 때문에 일반 차량에는 사용되지 않고 항공기나 포뮬러 1 경주차에만 사용됩니다. 




▲ 에어버스 A350에 사용되는 카본 디스크 브레이크


세라믹 복합 소재로 만든 브레이크 디스크가 최초로 사용된 것도 자동차는 아니었습니다. 고속 열차의 대명사인 TGV가 바로 그 장본인입니다. 그리고 1999년 프랑크푸르트 모터쇼를 통하여 세계 최초의 카본 세라믹 브레이크 디스크가 선을 보이고 2001년 포르쉐의 고성능 모델인 911 GT2를 통하여 최초로 자동차에 적용됩니다. 그리고 부가티 등의 슈퍼카, 그리고 독일 3사의 고성능 모델 등에 적용됩니다. 주철 디스크에 비하여 절반 이하의 무게로 차량의 조종 성능을 높이고 가혹하게 사용해도 제동력이 떨어지지 않으며 페달 감각도 명료한 데다 카본 디스크와는 달리 차가울 때나 물에 젖어도 제동력에 변화가 없는 카본 세라믹 디스크는 디스크의 결정판이었습니다. 하지만 대당 1천만 원을 넘나드는 가격이 문제입니다. 




▲ 포르쉐 PCCB 카본 세라믹 브레이크 디스크


충분한 제동력을 확보한 브레이크 시스템은 다른 방향의 진화를 시작합니다. 그것은 제동력의 조절이었습니다. 브레이크를 너무 강하게 밟았거나 노면이 미끄러워서 타이어가 미끄러지기 시작하면 제동 거리도 길어지지만, 운전자가 마음대로 차를 조종하기가 어려워집니다. 그래서 발명된 것이 ABS(Anti-Lock Brake System) 입니다. ABS의 획기적인 점은 네 바퀴의 제동력을 제각기 조절할 수 있다는 점입니다. 아무리 운전을 잘 하는 프로 드라이버라도 이것은 불가능합니다. ABS는 차량의 조종 안정성을 비약적으로 향상시키고 브레이크 시스템의 역할을 제동 이상의 영역으로 확장한 일대 사건이었습니다.


ABS가 네 바퀴의 제동력을 조절할 수 있게 되자 브레이크 시스템은 완전히 새로운 단계로 접어듭니다. 그 첫 번째는 전자 제어 차동 장치, 즉 EDL(Electronic Differential Lock)입니다. 미끄러운 노면에 한쪽 바퀴만 놓여있을 때 출발하려고 가속 페달을 밟으면 한쪽 바퀴만 헛돌고 차는 움직이지 못합니다. 이런 상황을 방지하려면 별도의 차동 제한 장치, 즉 LSD가 필요했습니다. 하지만 ABS의 기구를 이용하여 헛도는 바퀴에만 브레이크를 걸 수 있게 되자 이 문제는 간단하게 해결되었습니다. 


더 나아가 브레이크는 차량의 조종 특성에 능동적으로 개입하기 시작합니다. 전자제어 주행안정장치, 즉 ESC(Electronic Stability Control)이 그것입니다. 운전자가 스티어링 휠을 돌린 것만큼 차량이 선회하지 못하고 부족하거나 과도하게 선회하는 언더스티어와 오버스티어 현상을 제어하는 데에 ABS의 ‘한 바퀴 브레이킹’이 효과적이었던 것입니다. 이제는 ESC가 엔진의 출력을 포함한 차량의 주행 장비의 대부분을 총괄하여 제어하는 안전 운전의 최고 사령관이 되었을 정도입니다.


그리고 마지막으로 브레이크 시스템은 글자 그대로 차를 빠르게 달리게 하는 단계까지 발전했습니다. 그것은 바로 회생 제동 장치입니다. 지금까지의 제동 장치가 운동에너지를 마찰력을 통하여 열에너지로 발산시키면서 속도를 떨어뜨린 것이었다면 회생 제동 장치는 운동에너지를 전기에너지로 변환하여 다시 거두어들입니다. 이때 사용되는 제동력의 원천은 마찰력이 아니라 발전기 내부의 자석에서 나오는 자기장의 힘입니다. 거둬들인 에너지는 다시 가속할 때 모터를 돌려 실제로 차를 더 민첩하게 달리도록 도와줍니다. 이처럼 회생 제동 장치는 에너지 효율을 높일 뿐만 아니라 가속력을 향상시킨 것입니다. 회생 제동 장치는 전기차나 하이브리드 자동차 등 전기 구동 장치가 있는 모델은 모두, 그리고 ISG 시동 차단 장치가 있는 차량들에게도 널리 적용되고 있습니다.




▲ 토요타 하이브리드 구동 장치의 모터

회생 제동용 발전기의 역할도 함께 수행한다.


‘브레이크를 잘 사용하면 더 빠르다’ 이 말은 이제 자동차 경주뿐만 아니라 실제 생활에서도 통하는 원칙입니다. 그것을 현대적 브레이크 시스템이 가능하게 했습니다.





※ 본 콘텐츠는 집필가의 의견으로, 삼성화재의 생각과는 다를 수 있습니다. 






다양한 보험 정보와 생활Tip이 궁금하다면? 

삼성화재 SNS와 친구가 되어주세요 :)





저작자 표시 비영리 변경 금지
신고

댓글을 달아 주세요

티스토리 툴바